The coefficient of variance is 0.2
Explanation:The coefficient of variance is given as:
[tex]\begin{gathered} CV=\frac{\sigma}{\mu} \\ \\ \sigma\text{ - Standard deviation} \\ \mu\text{ - Mean} \end{gathered}[/tex]We find the mean and standard deviation first.
Part A:
Mean:
[tex]\begin{gathered} \mu=\sum ^{14}_{i\mathop=1}\frac{x_i}{14} \\ \\ =\frac{416400}{14}=29742.9 \end{gathered}[/tex]Standard Deviation:
[tex]\begin{gathered} \sigma=\sqrt[]{\sum ^{14}_{i\mathop{=}1}\frac{(x_i-\mu)^2}{14}} \\ \\ =\sqrt[]{\frac{339562784.9}{14}} \\ \\ =\sqrt[]{24254484.64} \\ \\ =4924.9 \end{gathered}[/tex]Therefore, the coefficient of variance is:
[tex]\frac{4924.9}{29742.9}=0.2[/tex]