Step 1:
Let the rate(speed) of motor boat = m
Let the rate(speed) of current = n
Step 2:
Distance = Speed X Time
Time = 18hour for down a river
Total distance for flowing downward = 135
[tex]\begin{gathered} 18m\text{ + 18n = 135} \\ 2m\text{ + 2n = 15} \end{gathered}[/tex]Total distance for flowing upstream due to current = 135
[tex]\begin{gathered} 30m\text{ - 30n = 135} \\ 2m\text{ - 2n = 9} \end{gathered}[/tex]Step 3:
Add the first and the second equation.
[tex]\begin{gathered} 2m\text{ + 2n + 2m - 2n = 15 + 9} \\ 4m\text{ = 24} \\ \text{m = }\frac{24}{4} \\ \text{m = 6 mile/hr} \end{gathered}[/tex]Substitute m in any equation to find n.
[tex]\begin{gathered} 2m\text{ - 2n = 9} \\ 2\times\text{6 - 2n = 9} \\ 12\text{ - 2n = 9} \\ 2n\text{ = 12 - 9} \\ 2n\text{ = 3} \\ n\text{ = }\frac{3}{2} \\ n\text{ = 1.5 miles/hr} \end{gathered}[/tex]Final answer
Rate of the motor boat in still water m = 6 miles/hr
Rate of the current n = 1.5 miles/hr