In the quadratic equation above, k and p are constants. What are the solutions for x?
(Check the photo)

Answer:
[tex]\textsf{D)} \quad x=\dfrac{r}{2} \pm \dfrac{\sqrt{k^2+r^2}}{2}[/tex]
Step-by-step explanation:
Given equation:
[tex]x^2-rx=\dfrac{k^2}{4}[/tex]
Subtract k²/4 from both sides:
[tex]\implies x^2-rx-\dfrac{k^2}{4}=\dfrac{k^2}{4}-\dfrac{k^2}{4}[/tex]
[tex]\implies x^2-rx-\dfrac{k^2}{4}=0[/tex]
Solve using the quadratic formula.
Quadratic Formula
[tex]x=\dfrac{-b \pm \sqrt{b^2-4ac} }{2a}\quad\textsf{when }\:ax^2+bx+c=0[/tex]
Therefore:
[tex]a=1 \quad \quad b=-r \quad \quad c=-\dfrac{k^2}{4}[/tex]
Substitute the values into the quadratic formula:
[tex]\implies x=\dfrac{-(-r) \pm \sqrt{(-r)^2-4(1)\left(-\dfrac{k^2}{4}\right)} }{2(1)}[/tex]
[tex]\implies x=\dfrac{-(-r) \pm \sqrt{(-r)^2-4\left(-\dfrac{k^2}{4}\right)} }{2}[/tex]
Apply the rule (-a)² = a² :
[tex]\implies x=\dfrac{-(-r) \pm \sqrt{r^2-4\left(-\dfrac{k^2}{4}\right)} }{2}[/tex]
Apply the rule -(-a) = a :
[tex]\implies x=\dfrac{r \pm \sqrt{r^2+\dfrac{4k^2}{4}} }{2}[/tex]
[tex]\implies x=\dfrac{r \pm \sqrt{r^2+k^2} }{2}[/tex]
[tex]\implies x=\dfrac{r \pm \sqrt{k^2+r^2} }{2}[/tex]
[tex]\implies x=\dfrac{r}{2} \pm \dfrac{\sqrt{k^2+r^2}}{2}[/tex]