Respuesta :

Answer:

[tex]\textsf{D)} \quad x=\dfrac{r}{2} \pm \dfrac{\sqrt{k^2+r^2}}{2}[/tex]

Step-by-step explanation:

Given equation:

[tex]x^2-rx=\dfrac{k^2}{4}[/tex]

Subtract k²/4 from both sides:

[tex]\implies x^2-rx-\dfrac{k^2}{4}=\dfrac{k^2}{4}-\dfrac{k^2}{4}[/tex]

[tex]\implies x^2-rx-\dfrac{k^2}{4}=0[/tex]

Solve using the quadratic formula.

Quadratic Formula

[tex]x=\dfrac{-b \pm \sqrt{b^2-4ac} }{2a}\quad\textsf{when }\:ax^2+bx+c=0[/tex]

Therefore:

[tex]a=1 \quad \quad b=-r \quad \quad c=-\dfrac{k^2}{4}[/tex]

Substitute the values into the quadratic formula:

[tex]\implies x=\dfrac{-(-r) \pm \sqrt{(-r)^2-4(1)\left(-\dfrac{k^2}{4}\right)} }{2(1)}[/tex]

[tex]\implies x=\dfrac{-(-r) \pm \sqrt{(-r)^2-4\left(-\dfrac{k^2}{4}\right)} }{2}[/tex]

Apply the rule  (-a)² = a² :

[tex]\implies x=\dfrac{-(-r) \pm \sqrt{r^2-4\left(-\dfrac{k^2}{4}\right)} }{2}[/tex]

Apply the rule  -(-a) = a :

[tex]\implies x=\dfrac{r \pm \sqrt{r^2+\dfrac{4k^2}{4}} }{2}[/tex]

[tex]\implies x=\dfrac{r \pm \sqrt{r^2+k^2} }{2}[/tex]

[tex]\implies x=\dfrac{r \pm \sqrt{k^2+r^2} }{2}[/tex]

[tex]\implies x=\dfrac{r}{2} \pm \dfrac{\sqrt{k^2+r^2}}{2}[/tex]

RELAXING NOICE
Relax