Use logarithmic differentiation to find the derivative of the function [tex]f(x) = \frac{ {x}^{ \frac{2}{5} } \sqrt{ {x}^{2} + 1} }{ \sqrt[5]{ {x}^{4} + 1 } } [/tex]

we are given the following function:
[tex]f(x)=\frac{x^{\frac{2}{5}}\sqrt[]{x^2+1}}{\sqrt[5]{x^4+1}}[/tex]we are asked to find the derivative of this function. To do that, we will take logarithms on both sides of the equation, like this:
[tex]\ln f(x)=\ln \frac{x^{\frac{2}{5}}\sqrt[]{x^2+1}}{\sqrt[5]{x^4+1}}[/tex]Now we will use the following property of logarithms:
[tex]\ln \frac{a}{b}=\ln a-\ln b[/tex]applying that property we get:
[tex]\ln f(x)=\ln x^{\frac{2}{5}}\sqrt[]{x^2+1}-\ln \sqrt[5]{x^4+1}[/tex]Now we will use the following property of logarithms:
[tex]\ln ab=\ln a+\ln b[/tex]applying that property we get:
[tex]\ln f(x)=\ln x^{\frac{2}{5}}+\ln \sqrt[]{x^2+1}-\ln \sqrt[5]{x^4+1}[/tex]Now we'll make use of the following property of logarithms:
[tex]\ln a^b=b\ln a[/tex]We'll rewrite the roots first as fractional exponents:
[tex]\ln f(x)=\ln x^{\frac{2}{5}}+\ln (x^2+1)^{\frac{1}{2}}-\ln (x^4+1)^{\frac{1}{5}}[/tex]Now we apply the property:
[tex]\ln f(x)=\frac{2}{5}\ln x+\frac{1}{2}\ln (x^2+1)-\frac{1}{5}\ln (x^4+1)[/tex]Now we differentiate on both sides of the equation, following the rules of logarithmic differentiation, that is:
[tex]\frac{d}{dx}(\ln f(x))=\frac{f^{\prime}(x)}{f(x)}[/tex]Applying that to the equation:
[tex]\frac{f^{\prime}(x)}{f(x)}=\frac{2}{5}(\frac{1}{x})+\frac{1}{2}(\frac{2x}{x^2+1})-\frac{1}{2}(\frac{4x^3}{x^4+1})[/tex]Simplifying:
[tex]\frac{f^{\prime}(x)}{f(x)}=\frac{2}{5x}+\frac{x}{x^2+1}-\frac{2x^3}{x^4+1}[/tex]Now we solve for f'(x), like this:
[tex]f^{\prime}(x)=f(x)(\frac{2}{5x}+\frac{x}{x^2+1}-\frac{2x^3}{x^4+1})[/tex]Now we substitute the value of f(x)
[tex]f^{\prime}(x)=\frac{x^{\frac{2}{5}}\sqrt[]{x^2+1}}{\sqrt[5]{x^4+1}}(\frac{2}{5x}+\frac{x}{x^2+1}-\frac{2x^3}{x^4+1})[/tex]And this is the derivative of the function.