The given equation is:
[tex]2\cos x+\sqrt[]{2}=0[/tex]Move the constant to the right, changing its sign:
[tex]\Rightarrow2\cos x=-\sqrt[]{2}[/tex]Divide both sides of the equation by 2:
[tex]\begin{gathered} \frac{2\cos x}{2}=\frac{-\sqrt[]{2}}{2} \\ \Rightarrow\cos x=\frac{-\sqrt[]{2}}{2} \end{gathered}[/tex]Since cos t = cos(2π-t), it follows that the equation has two solutions:
[tex]\cos x=-\frac{\sqrt[]{2}}{2};\; \cos \text{ (2}\pi-x)=-\frac{\sqrt[]{2}}{2}[/tex]Consider the first equation:
[tex]\begin{gathered} \cos x=-\frac{\sqrt[]{2}}{2} \\ Use\text{ the inverse trigonometry function to isolate x:} \\ \Rightarrow x=\arccos (-\frac{\sqrt[]{2}}{2}) \\ \Rightarrow x=\frac{3\pi}{4} \\ \end{gathered}[/tex]Since the cosine function is periodic, add the period to the solution:
[tex]\Rightarrow x=\frac{3\pi}{4}+2\pi k;\; k\in Z[/tex]Consider the second equation and apply the same procedure as before:
[tex]\begin{gathered} \; \cos \text{ (2}\pi-x)=-\frac{\sqrt[]{2}}{2} \\ \Rightarrow2\pi-x=\frac{3\pi}{4}+2\pi k \\ \Rightarrow-x=\frac{3\pi}{4}-2\pi+2\pi k \\ \Rightarrow-x=-\frac{5\pi}{4}+2\pi k \\ \Rightarrow x=\frac{5\pi}{4}-2\pi k \end{gathered}[/tex]Since k is an integer, then -2πk=2πk.
[tex]\Rightarrow x=\frac{5\pi}{4}+2\pi k[/tex]
Hence the solutions are:
[tex]\begin{cases}x=\frac{3\pi}{4}+2\pi k \\ x=\frac{5\pi}{4}+2\pi k\end{cases}k\in Z[/tex]Notice that the solutions are required to be in [0,2π).
Hence, substitute integer values of k into the solutions and find values of x that fall in the given interval of solutions.
[tex]\begin{gathered} x=\frac{3\pi}{4}+2\pi k;k=0 \\ \Rightarrow x=\frac{3\pi}{4}+2\pi(0)=\frac{3\pi}{4} \end{gathered}[/tex]Other values of k will not fall in the required interval for this solution.
Check for the second solution:
[tex]\begin{gathered} x=\frac{5\pi}{4}+2\pi k;k=0 \\ \Rightarrow x=\frac{5\pi}{4}+2\pi(0)=\frac{5\pi}{4} \end{gathered}[/tex]Other values for other integer values do not fall in the interval.
Hence, the solutions are:
[tex]x=\frac{3\pi}{4},\frac{5\pi}{4}[/tex]