Explanation
Step 1
solve the inequality 1
[tex]\begin{gathered} 3x-4>5 \\ \text{add 4 in both sides} \\ 3x-4+4>5+4 \\ 3x>9 \\ \text{divide both sides by 3} \\ \frac{3x}{3}>\frac{9}{3} \\ x>3 \end{gathered}[/tex]so, the solution of inequality 1 is
[tex]x>3[/tex]Step 2
solve inequality 2
[tex]\begin{gathered} 1-2x\ge7 \\ \text{subtract 1 in both sides} \\ 1-2x-1\ge7-1 \\ -2x\ge6 \\ \text{divide both sides by -2( remember swap the sign when multiplying or dividing by a negative number)} \\ \end{gathered}[/tex][tex]\begin{gathered} -2x\ge6 \\ \frac{-2x}{-2}\leq\frac{6}{-2} \\ x\leq-3 \end{gathered}[/tex]Step 3
finally, we have or, it means the solution is the union of the sets,
hence
solution
[tex]\begin{gathered} x>3\text{ }\cup x\leq-3 \\ (-\infty,3)\text{ }\cup\text{ }\lbrack3,\infty) \end{gathered}[/tex]x