Respuesta :

Given the function:

[tex]f(x)=-3(2^x)[/tex]

The function has the following domain:

{0, 1, 2, 3, 4}

Let's solve to find the smallest output.

[tex]f(0)=-3(2^0)\text{ = -3(1) = -3}[/tex][tex]f(1)=-3(2^1)\text{ = -3(2) = -6}[/tex][tex]f(2)=-3(2^2)\text{ = -3(4) = -12}[/tex][tex]f(3)=-3(2^3)\text{ = -3(8) = -24}[/tex][tex]f(4)=-3(2^4)=-3(16)\text{ = -48}[/tex]

Therefore, the range/output of the function is:

{-3, -6, -12, -24, -48}

The smallest possible output of the function is -48

ANSWER:

-48

RELAXING NOICE
Relax