A car of mass 1250kg drives around a curve with a speed of 22m/s

Given
Mass of the car, m=1250 kg
Speed of the car, v=22 m/s
To find
a. Centripetal acceleration of the car
b. The radius of the smallest circle.
Explanation
a. Given the radius is r=35 m
The centripetal acceleration is given by
[tex]\begin{gathered} a=\frac{v^2}{r} \\ \Rightarrow a=\frac{22^2}{35} \\ \Rightarrow a=13.82\text{ m/s}^2 \end{gathered}[/tex]b. The frictional force is F=20,000N
The speed is v=22 m/s
Thus,
[tex]\begin{gathered} F=m\frac{v^2}{r} \\ \Rightarrow20,000=1250\times\frac{22^2}{r} \\ \Rightarrow r=30.25\text{ m} \end{gathered}[/tex]Conclusion
a. The centripetal acceleration is
[tex]13.82\text{ m/s}^2[/tex]b.The radius is 30.25 m