Let us set H for the height and b for the base:
H= three more than two times the base.
Then
H = 3+2b
Now, the area of the triangle is 45 feet square.
The area is given by the next formula:
[tex]A=\frac{b\ast h}{2}[/tex]Then, we can replace
A = 45
H = 3+2b
[tex]45=\frac{b(3+2b)}{2}[/tex]Solve for b
[tex]\begin{gathered} 3b+2b^2=2\ast45 \\ 2b^2+3b-90=0 \end{gathered}[/tex]Use the quadratic equation:
[tex]b=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]Use the form ax²+bx+c:
Where a=2, b=3 and c=-90
Replacing:
[tex]\begin{gathered} b=\frac{-3\pm\sqrt{(-3)^2-4(2)(-90)}}{2(2)} \\ Simplify: \\ b=6 \end{gathered}[/tex]Hence, the base is equal to 6 feet.
Then:
H =3+2b
Replace b=6
H=3+2(6)
H = 15
Therefore, the height of the triangle is equal to 15 feet