Consider the following quadratic equation -x^ 2 equiv-8x+16 Step 1 of 2: Find the values of a, band that should be used in the quadratic formula to determine the solution of the quadratic equation

ANSWER
[tex]\begin{gathered} a=-1 \\ b=8 \\ c=-16 \end{gathered}[/tex]EXPLANATION
Given;
[tex]-x^2=-8x+16[/tex]Subtract 16 from both sides and simplify;
[tex]\begin{gathered} -x^2-16=-8x+16-16 \\ -x^2-16=-8x \end{gathered}[/tex]Add 8x to both sides and simplify;
[tex]\begin{gathered} -x^2-16+8x=-8x+8x \\ -x^2+8x-16=0 \end{gathered}[/tex]Comparing with standard quadratic equation;
[tex]\begin{gathered} -x^2+8x-16=0 \\ ax^2+bx+c=0 \end{gathered}[/tex]Therefore the values of a,b and c are;
[tex]\begin{gathered} a=-1 \\ b=8 \\ c=-16 \end{gathered}[/tex]