Respuesta :

Answer:

The length of AB is;

[tex]12\text{ ft}[/tex]

Explanation:

Given the isosceles trapezoid in the attached image.

The length of line segment AE will be;

[tex]\begin{gathered} AE=\frac{28-12}{2}=\frac{16}{2} \\ AE=8\text{ ft} \end{gathered}[/tex]

We can then use the Pythagorean theorem to solve for the length of the line segment AB;

[tex]\begin{gathered} AB^2=AE^2+BE^2 \\ AB^2=8^2+9^2 \\ AB^2=64+81 \\ AB=\sqrt[]{64+81} \\ AB=\sqrt[]{145} \\ AB=12.04ft \\ AB=12\text{ ft} \end{gathered}[/tex]

Therefore, the length of AB is;

[tex]12\text{ ft}[/tex]

RELAXING NOICE
Relax