Respuesta :
The formula is
[tex]C=c(1+n\times i)[/tex]Where C is the total, c initial capital, n the number of years and i interest percentage
We can modify the formula to express the total won
[tex]C=c_1(1+n\times i_1)+c_2(1+n\times i_2)+c_3(1+n\times i_3)[/tex]Where c1 is the par 5%, C2 the par at 11% and c3 the par at 14%
i1,i2 and i3 the percentage of interest applied to each part
as a total you must use the total earned plus the initial capital
so replacing
[tex]\begin{gathered} 8100+942=c_1(1+1\times0.05)+c_2(1+1\times0.11)+c_3(1+1\times0.14) \\ 9042=c_1(1.05)+c_2(1.11)+c_3(1.14) \end{gathered}[/tex]this was our first equation
the next comes from: the sum of all inverted parts is 8100
so
[tex]c_1+c_2+c_3=8100[/tex]hitrd equation is from: The amount of money invested at 14% was $500 more than the amounts invested at 5% and 11% combined.
[tex]c_3=c_1+c_2+500[/tex]Solution of the equations
[tex]\begin{gathered} 9042=c_1(1.05)+c_2(1.11)+c_3(1.14) \\ c_1+c_2+c_3=8100 \\ c_3=c_1+c_2+500 \end{gathered}[/tex]we replace the third equation on the second
[tex]\begin{gathered} c_1+c_2+(c_1+c_2+500)=8100 \\ 2c_1+2c_2=8100-500 \\ 2c_1=7600-2c_2 \\ \\ c_1=\frac{7600-2c_2}{2} \\ \\ c_1=3800-c_2 \end{gathered}[/tex]now replace c3 and c1 on the first equation to find c2
[tex]9042=(3800-c_2)(1.05)+c_2(1.11)+(c_1+c_2+500)(1.14)[/tex]now replace c1 again
[tex]9042=(3800-c_2)(1.05)+c_2(1.11)+(3800-c_2+c_2+500)(1.14)[/tex]and find c2
[tex]\begin{gathered} 9042=3990-1.05c_2+1.11c_2+(4300)(1.14) \\ 9042-3990=0.06c_2+4902 \\ 5052-4902=0.06c_2 \\ 150=0.06c_2_{} \\ \\ c_2=\frac{150}{0.06}=2500 \end{gathered}[/tex]the value of c2 or the part at 11% is $2,500
now we can replace c2 in one of the equations we solved, for example this
[tex]c_1=3800-c_2[/tex]and find c1
[tex]\begin{gathered} c_1=3800-2500 \\ c_1=1300 \end{gathered}[/tex]the value of c1 or the part at 5% is $1,300
now we can repalce c1 and c2 on the equation
[tex]c_1+c_2+c_3=8100[/tex]and find c3
[tex]\begin{gathered} 1300+2500+c_3=8100 \\ c_3=8100-1300-2500 \\ c_3=4300 \end{gathered}[/tex]the value of c3 or the part at 14% is $4,300
the total values are
part at 11% is $2,500
part at 5% is $1,300
part at 14% is $4,300
