Respuesta :

Given:

[tex]f(x)=\begin{cases}{2x+7\text{ \_\_\_\_}x\leq0} \\ {} \\ {4-x,\text{ \_\_\_\_\_}x>0}\end{cases}[/tex]

Required:

We need to find the value of f(-2), f(0), and f(1),

Explanation:

a)

Let x =-2.

We know that -2 is less than 0.

The function for x =-2 is

[tex]f(x)=2x+7,\text{ }x\leq0[/tex]

Substitute x =-2 in the equation.

[tex]f(-2)=2(-2)+7[/tex][tex]f(-2)=-4+7[/tex][tex]f(-2)=3[/tex]

b)

Let x =0.

[tex]T\text{he values x =0 also includeed in the inequality }x\leq0\text{ , }[/tex]

The function for x =0 is

[tex]f(x)=2x+7[/tex]

Substitute x = 0 in the equation.

[tex]f(0)=2(0)+7[/tex][tex]f(0)=0+7[/tex][tex]f(0)=7[/tex]

c)

Let x =1.

We know that x is greater than 0.

The function for x =1 is

[tex]f(x)=4-x,\text{ x>0}[/tex]

Substitute x =1 in the equaiton.

[tex]f(1)=4-1[/tex][tex]f(1)=3[/tex]

Final answer:

a)

[tex]f(-2)=3[/tex]

b)

[tex]f(0)=7[/tex]

c)

[tex]f(1)=3[/tex]

RELAXING NOICE
Relax