Respuesta :

we have the formula

[tex]T(t)=T_s+D_0e^{-kt}[/tex]

step 1

Find out the value of k

we have

T=150 degrees

Ts=70

To=200

Do=200-70=130

t=10 min

substitute

[tex]\begin{gathered} 150=70+130e^{-10k} \\ 150-70=130e^{-10k} \\ 80=130e^{-10k} \\ \frac{80}{130}=e^{-10k} \end{gathered}[/tex]

Apply ln on both sides

[tex]\ln (\frac{80}{130})=\ln e^{-10k}[/tex][tex]\begin{gathered} \ln (\frac{80}{130})=-10k\cdot\ln e^{} \\ \ln (\frac{80}{130})=-10k \\ k=0.0486 \end{gathered}[/tex]

substitute the value of k in the given formula

[tex]T(t)=T_s+D_0e^{-0.0486t}[/tex]

Now

For t=20 min

Ts=70

To=200

Do=200-70=130

substitute

[tex]\begin{gathered} T(t)=70+130\cdot e^{-0.0486\cdot10} \\ T(t)=150 \end{gathered}[/tex]

The answer is option A

ACCESS MORE
EDU ACCESS
Universidad de Mexico