Respuesta :

Explanation

We must solve for x the following equation:

[tex]\frac{x+8}{\left(x+3\right)\left(x+4\right)}=\frac{3}{x+3}.[/tex]

1) Assuming x ≠ -3 and x ≠ -4, we multiply both sides both sides by (x + 3)(x + 4):

[tex](x+8)=3\cdot(x+4).[/tex]

2) Applying the distribution property for the multiplication on the right side, we have:

[tex]x+8=3x+12.[/tex]

3) Passing the x at the left as -x at the right, we have:

[tex]\begin{gathered} 8=3x-x+12, \\ 8=2x+12. \end{gathered}[/tex]

4) Passing the +12 at the right as -12 at the left, we have:

[tex]\begin{gathered} 8-12=2x, \\ -4=2x. \end{gathered}[/tex]

5) Finally, dividing both sides by 2, we get:

[tex]x=-\frac{4}{2}=-2.[/tex]Answer

x = -2

RELAXING NOICE
Relax