Answer:
The probability of choosing 3 sodas and 4 water is;
[tex]0.385[/tex]Explanation:
Given that Ali's cooler there are 7 bottles of soda and 9 bottles of water.
And Ali needs to choose 7 bottles at random, the probability that he chooses 3 soda and 4 bottles of water is;
[tex]P=\frac{^{ns}C_{rs}\times^{nw}C_{rw}}{^{nt}C_{rt}}[/tex]Note;
number of soda ns = 7
number of water nw = 9
The total number of options to select from is; 7 + 9 nt = 16
Number of soda selected rs= 3
number water selected rw= 4
Total number of bottles selected = 3+4 rt= 7
Substituting the given values;
[tex]\begin{gathered} P=\frac{^{ns}C_{rs}\times^{nw}C_{rw}}{^{nt}P_{rt}} \\ P=\frac{^7C_3\times^9C_4}{^{16}C_7} \end{gathered}[/tex]solving for P;
[tex]\begin{gathered} P=\frac{(\frac{7!}{4!3!})\times(\frac{9!}{5!4!})}{(\frac{16!}{9!7!})}=\frac{4410}{11440} \\ P=\frac{441}{1144} \\ P=0.385 \end{gathered}[/tex]Therefore, the probability of choosing 3 sodas and 4 water is;
[tex]0.385[/tex]