Find standard form of the equation of the hyperbola that satisfies the given conditions:Vertices: (0, -2) and (0, 2)Asymptote: y=2x

aAs given by the question
There are given that the vertices and asymptote:
[tex]\begin{gathered} \text{Vertices: (0, -2) and (0, 2)} \\ \text{Asymptote: y=2x} \end{gathered}[/tex]Now,
First find the center (h, k):
So,
The center is the midpoint point of the vertices:
Then,
[tex]\begin{gathered} (h,\text{ k)=(}\frac{0+0}{2},\text{ }\frac{-2+2}{2}) \\ (h,\text{ k)=(0},\text{ 0}) \end{gathered}[/tex]Now,
Find the value of a
So,
a is the distance of center to vertices
So,
[tex]\begin{gathered} a=\sqrt[]{(0+2)^2+(0-0)^2} \\ a=\sqrt[]{4} \\ a=2 \\ a^2=4 \end{gathered}[/tex]Now,
From from the slope:
[tex]\frac{a}{b}[/tex]Then,
From the given asymptote, the slope of the equation is 2 which is given in the equation of asymptote.
So,
[tex]\begin{gathered} \frac{a}{b}=2 \\ \frac{2}{b}=2 \\ 2b=2 \\ b=1 \end{gathered}[/tex]Now,
From the standard form of the hyperbola:
[tex]\frac{(y-k)^2}{a^2}+\frac{(x-h)^2}{b^2}=1[/tex]Then,
[tex]\begin{gathered} \frac{(y-k)^2}{a^2}+\frac{(x-h)^2}{b^2}=1 \\ \frac{(y-0)^2}{4^{}}+\frac{(x-0)^2}{1^{}}=1 \end{gathered}[/tex]Hence, the equation of hyperbola is shown below:
[tex]\begin{gathered} \frac{(y-0)^2}{4^{}}+\frac{(x-0)^2}{1^{}}=1 \\ \frac{(y)^2}{4^{}}+\frac{(x)^2}{1^{}}=1 \end{gathered}[/tex]