x = 7 and x = 3
Explanation
the solution of the quadratic equation
[tex]ax^2+bx+c=0[/tex]is
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]Step 1
[tex]x^2-10x=-21[/tex]a) let the right side equals zero,to do that add 21 in both sides
[tex]\begin{gathered} x^2-10x=-21 \\ add\text{ 21 in both sides} \\ x^2-10x+21=-21+21 \\ x^2-10x+21=0 \end{gathered}[/tex]
b)Let
[tex]\begin{gathered} x^2-10x+21=0\Rightarrow ax^2+bx+c=0 \\ hence \\ a=1 \\ b=-10 \\ c=21 \end{gathered}[/tex]now, replace and evaluate to find x
[tex]\begin{gathered} x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \\ x=\frac{-(-10)\pm\sqrt{(-10^2)-4(1)(21)}}{2(1)} \\ x=\frac{10\pm\sqrt{100-84}}{2}=\frac{10\pm\sqrt{16}}{2} \\ x=\frac{10\pm4}{2} \end{gathered}[/tex]therefore ,t he solutions are
[tex]\begin{gathered} x=\frac{10\pm4}{2} \\ x_1=\frac{10+4}{2}=\frac{14}{2}=7 \\ x_1=\frac{10-4}{2}=\frac{6}{2}=3 \end{gathered}[/tex]so, the answer is
x = 7 and x = 3
I hope this helps you