PLEASE HELP!! CALCULUS QUESTION
How to do this?
![PLEASE HELP CALCULUS QUESTION How to do this class=](https://us-static.z-dn.net/files/dfa/b56fb82bdc61ea9375fbde26169ec0f2.png)
Answer:
[tex]\displaystyle \int\limits^{49}_{36} {\frac{ln(y)}{\sqrt{y}}} \, dy = 28ln(7) - 24ln(6) - 4[/tex]
General Formulas and Concepts:
Algebra I
Calculus
Derivatives
Derivative Notation
Basic Power Rule:
Logarithmic Derivative: [tex]\displaystyle \frac{d}{dx} [lnu] = \frac{u'}{u}[/tex]
Integrals
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration by Parts: [tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int\limits^{49}_{36} {\frac{ln(y)}{\sqrt{y}}} \, dy[/tex]
Step 2: Integrate Pt. 1
Identify and find variables for Integration by Parts.
Step 3: Integrate Pt. 2
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e