What is the ratio equivalent oftar (C)? hint: use the Pythagorean theorem to find the missing side

GivenHiven the Right Triangle ABC, you can find the missing side AB using the Pythagorean Theorem. This states that:
[tex]c^2=a^2+b^2[/tex]Where "c" is the hypotenuse, and "a" and "b" are the legs of the Right Triangle.
In this case:
[tex]\begin{gathered} c=35 \\ a=28 \\ b=AB \end{gathered}[/tex]Then, substituting values and solving for AB, you get:
[tex](35)^2=(28)^2+(AB)^2[/tex][tex]\begin{gathered} \sqrt[]{(35)^2-(28)^2}=AB \\ \\ \sqrt[]{441}=AB \\ \\ AB=21 \end{gathered}[/tex]By definition:
[tex]\tan \alpha=\frac{opposite}{adjacent}[/tex]In this case, you can identify that:
[tex]\begin{gathered} \alpha=C \\ opposite=AB=21 \\ adjacent=BC=28 \end{gathered}[/tex]Therefore:
[tex]\begin{gathered} \tan (C)=\frac{21}{28} \\ \\ \tan (C)=\frac{3}{4} \end{gathered}[/tex]Hence, the answer is:
[tex]\tan (C)=\frac{3}{4}[/tex]