Respuesta :

We are given the following equation

[tex](x-1)^2-80=0[/tex]

Let us solve the above equation.

Add 80 to both sides of the equation

[tex]\begin{gathered} (x-1)^2-80+80=80 \\ (x-1)^2=80 \end{gathered}[/tex]

Take square root on both sides of the equation

[tex]\begin{gathered} \sqrt{(x-1)^2}=\sqrt{80} \\ x-1=\pm\sqrt[]{80} \end{gathered}[/tex]

Add 1 to both sides of the equation

[tex]\begin{gathered} x-1+1=\pm\sqrt[]{80}+1 \\ x=1\pm\sqrt[]{80} \end{gathered}[/tex]

So, there will be two solutions

[tex]x=1+\sqrt[]{80}\; \; and\; \; x=1-\sqrt[]{80}[/tex]

Simplify the root

[tex]x=1+4\sqrt[]{5}\; \; and\; \; x=1-4\sqrt[]{5}[/tex]

Therefore, the solution of the given equation is

[tex]x=1+4\sqrt[]{5},\; 1-4\sqrt[]{5}[/tex]

RELAXING NOICE
Relax