Respuesta :

We have the following expression:

[tex]2x^2+x-4=0[/tex]

By dividing both sides by 2, we get

[tex]x^2+\frac{1}{2}x-2=0[/tex]

At this point we can apply the quadratic formula:

[tex]\begin{gathered} \text{For ax}^2+bx+c=0 \\ x\text{ is given by} \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \end{gathered}[/tex]

where a is 1, b is 1/2 and c is -2. By substituting these values, we get

[tex]x=\frac{-\frac{1}{2}\pm\sqrt[]{(\frac{1}{2})^2-4(1)(-2)}}{2}[/tex]

which gives

[tex]\begin{gathered} x=\frac{-\frac{1}{2}\pm\sqrt[]{\frac{1}{4}+8}}{2} \\ x=\frac{-\frac{1}{2}\pm\sqrt[]{\frac{33}{4}}}{2} \\ x=\frac{-\frac{1}{2}\pm\frac{\sqrt[]{33}}{2}}{2} \\ x=-\frac{1}{4}\pm\frac{\sqrt[]{33}}{4} \end{gathered}[/tex]

Then, the solutions are

[tex]\begin{gathered} x=\frac{-1+\sqrt[]{33}}{4} \\ \text{and} \\ x=\frac{-1-\sqrt[]{33}}{4} \end{gathered}[/tex]

RELAXING NOICE
Relax