Respuesta :

Answer:

From the figure,

The length of BC = 17.89 unit and the length of DC =16 unit.

Now, find the angle y by using cosine function;

Cosine defines as the ratio of the adjacent side of a right triangle to the hypotenuse  

i.e  [tex]\cos = \frac{Adjacent side}{Hpotenuse}[/tex]

from the triangle BDC;

Hypotenuse = BC =17.89 unit and Adjacent side = 16 units

then;

[tex]\cos y =\frac{16}{17.89} =0.894354388[/tex] or

[tex]y =\cos^{-1} (0.894354388)[/tex] = [tex]26.57^{\circ}[/tex] (nearest to hundredths place)

Now, find the value of angle x;

In right angle ΔABC;

The sum of measures of the three angles in triangle ABC is 180 degrees.

[tex]\angle A + \angle B +\angle C =180^{\circ}[/tex]                    ....[1]

from the given figure, [tex]\angle B=90^{\circ}[/tex], [tex]\angle A =x^{\circ}[/tex] and

[tex]\angle C =y=26.57^{\circ}[/tex]

Substitute these in [1] to solve for  angle x;

[tex]x^{\circ}+90^{\circ}+y^{\circ} =180^{\circ}[/tex] or

[tex]x^{\circ}+90^{\circ}+26.57^{\circ} =180^{\circ}[/tex]

or

[tex]x^{\circ}+116.57^{\circ} =180^{\circ}[/tex]

Simplify:

[tex]x^{\circ}=180^{\circ}-116.57^{\circ}=63.43^{\circ}[/tex]

We have to find the value of sin x;

then;

The value of [tex]\sin 63.43 =0.89438856[/tex].


Trigonometry deals with the sides and angles of the triangle.

The value of sin x is 0.8943.

What is trigonometry?

It deals with the sides and angles of the triangle. Triangle is a polygon that has three sides and three angles. And the sum of all internal angles is 180.

Given

DC = 16 BC = 17.89

To find

The value of sin x?

In right-angle triangle BDC.

[tex]\begin{aligned} \rm cos\ y &=\rm \dfrac{base}{hypotenuse} \\\\\rm cos\ y &= \dfrac{16}{17.89}\\\\ \rm y &= 26.57^{o} \end{aligned}[/tex]

In ΔABC angle B is 90.

The sum of all internal angles is 180°, then

[tex]\begin{aligned} \rm x + y + 90^{o} &= 180^{o} \\\rm x + 26.57^{o} + 90^{o} &= 180^{o}\\\rm x &= 180^{o} - 26.57^{o} - 90^{o} \\\rm x &= 63.43^{o} \\\end{aligned}[/tex]

Then the value of sin x is 0.8943.

More about the Trigonometry link is given below.

https://brainly.com/question/6904750

ACCESS MORE