Can you check and see if I am doing this right

Given:
[tex]\cos ^2\mleft(\frac{1}{2}\cos ^{-1}\mleft(-\frac{4}{5}\mright)\mright)[/tex]To find the exact value:
We know the formula,
[tex]\cos ^2x=\frac{1+\cos 2x}{2}[/tex]If we take,
[tex]x=(\frac{1}{2}\cos ^{-1}(-\frac{4}{5}))[/tex]Then, the given problem can be rewritten as,
[tex]\begin{gathered} \cos ^2(\frac{1}{2}\cos ^{-1}(-\frac{4}{5}))=\frac{1+\cos\lbrack2(\frac{1}{2}\cos^{-1}(-\frac{4}{5}))\rbrack}{2} \\ =\frac{1+\cos \lbrack\frac{2}{2}\cos ^{-1}(-\frac{4}{5})\rbrack}{2} \\ =\frac{1+\cos \lbrack\cos ^{-1}(-\frac{4}{5})\rbrack}{2} \end{gathered}[/tex]Cancelling cos and its inverse we get
[tex]\begin{gathered} =\frac{1+(-\frac{4}{5})}{2} \\ =\frac{1-\frac{4}{5}}{2} \\ =\frac{\frac{1}{5}}{2} \\ =\frac{1}{10} \end{gathered}[/tex]Hence, the exact value is,
[tex]\frac{1}{10}[/tex]