Find the length of BC to the nearest whole number.

For the given figure, we will find the length of BC
From the triangle ABC:
[tex]\begin{gathered} tan\text{ }65=\frac{AB}{BC} \\ \\ so,AB=BC*tan\text{ }65\rightarrow\left(1\right) \end{gathered}[/tex]From the triangle ABD:
[tex]\begin{gathered} tan\text{ }20=\frac{AB}{BD} \\ so,AB=BD*tan\text{ }20\rightarrow\left(2\right) \end{gathered}[/tex]From (1) and (2)
[tex]BC*tan\text{ }65=BD*tan\text{ }20[/tex]note, as shown BD = 15 + BC
So,
[tex]BC*tan\text{ }65=\left(15+BC\right)*tan\text{ }20[/tex]Solve the equation to find BC
[tex]\begin{gathered} BC*tan\text{ }65=15\text{ }tan\text{ }20+BC*tan\text{ }20 \\ BC\left(tan\text{ }65+tan\text{ }20\right)=15\text{ }tan\text{ }20 \\ \\ BC=\frac{15\text{ }tan\text{ }20}{(tan\text{ 6}5+tan\text{ }20)}=2.176 \end{gathered}[/tex]Rounding to the nearest whole number
So, the answer will be BC = 2