Respuesta :

Given:

Center of circle = (6, 0)

Radius, r = √6

Let's write the equation of the circle in standard form.

Apply the standard equation of a circle:

[tex](x-h)^2+(y-k)^2=r^2[/tex]

Where:

Center of circle = (h, k)

r is the radius.

Thus, we have:

(h, k) ==> (6, 0)

r = √6

Substitute 6 for h, 0 for k, and √6 for r in the equation above.

We have:

[tex]\begin{gathered} (x-6)^2+(y-0)^2=\sqrt{6}^2 \\ \\ (x-6)^2+y^2=6 \end{gathered}[/tex]

Therefore, the equation of the circle in standard form is:

[tex](x-6)^2+y^2=6[/tex]

ANSWER:

[tex](x-6)^2+y^2=6[/tex]

RELAXING NOICE
Relax