Adding 1.1x to the first equation we get:
[tex]\begin{gathered} -1.1x+0.1y+1.1x=-12.1+1.1x, \\ 0.1y=-12.1+1.1x\text{.} \end{gathered}[/tex]
Multiplying the above equation by 10 we get:
[tex]\begin{gathered} 0.1y\times10=-12.1\times10+1.1x\times10, \\ y=-121+11x\text{.} \end{gathered}[/tex]
Substituting the above equation in the second one we get:
[tex]-3.3x+0.3(-121+11x)=-36.3.[/tex]
Simplifying the above equation we get:
[tex]\begin{gathered} -3.3x-36.3+3.3x=-36.3, \\ -36.3=-36.3. \end{gathered}[/tex]
The last equation is true for all (x,y) therefore the system has infinitely many solutions.
Answer: Infinite Number of Solutions.