Verify the equation is correct and fill in the blanks for B

Given that the function
[tex]f(x)\text{ =13x}[/tex]is a one-to-one function,
A) Equation for f⁻¹(x), the inverse function.
From the function f(x), interchange x and f(x).
thus,
[tex]\begin{gathered} f(x)\text{ = 13x} \\ in\text{terchanging x and f(x), we have} \\ x\text{ = 13f(x)} \\ \text{divide both sides by 13} \\ f(x)\text{ = }\frac{x}{13} \end{gathered}[/tex]thus, equation for f⁻¹(x), the inverse function is
[tex]f(x)\text{ = }\frac{x}{13}[/tex]B) To show that f(f⁻¹(x)) = x and f⁻¹(f(x)) = x
Starting with f(f⁻¹(x)):
Evaluating f(f⁻¹(x)) involves substituting the f⁻¹(x) function into the f(x) function.
In this case, let f⁻¹(x) be z(x).
Thus, we have f(f⁻¹(x)) to be f(z).
[tex]\begin{gathered} z(x)=f^{-1}(x)\text{ = }\frac{x}{13} \\ f(x)\text{ = }13x \\ \text{thus, substituting the z(x) function into the f(x) function, we have} \\ f(z(x))\text{ = }13(\frac{x}{13}) \\ \Rightarrow x \\ \end{gathered}[/tex]For f⁻¹(f(x)):
Similarly, evaluating f⁻¹(f(x)) involves substituting the f(x) function into the f⁻¹(x) function.
Thus, we have
[tex]\begin{gathered} f(x)\text{ = 13x} \\ f^{-1}(x)\text{ = }\frac{x}{13} \\ \text{thus, substituting f(x) into }f^{-1}(x)\text{ gives} \\ f^{-1}(f(x))\text{ = }\frac{1}{13}(13x) \\ \Rightarrow x \\ \end{gathered}[/tex]Hence,
[tex]\begin{gathered} f(f^{-1}(x))\text{ = }f(\frac{x}{13}) \\ \text{ = x} \end{gathered}[/tex][tex]\begin{gathered} f^{-1}(f(x))\text{ = }f^{-1}(13x) \\ =\text{ x} \end{gathered}[/tex]