Plot five points on the parabolic,the vertex, two points to the left of the vertex, and two points to the right of the vertex

Explanation
Step 1
find the vertex,
when you have a equation in the standard form
[tex]y=ax^2+bx+c[/tex]the vertex is given by
[tex]x=-\frac{b}{2a}[/tex]hence,
[tex]\begin{gathered} y=ax^2+bx+c\Rightarrow y=-2x^2 \\ so \\ a=-2 \\ b=0 \\ so,\text{ x= -}\frac{0}{2(-2)}=0 \\ so,\text{ the vertex is x= 0 ( or y- A}\Xi s) \end{gathered}[/tex]evaluate when x= 0 to find the coordinate of the vertex
[tex]\begin{gathered} y=-2(0)^2=0 \\ so,\text{ vertex=(0,0)} \end{gathered}[/tex]P1(0,0)
Step 2
now, 2 poins to the left
a)
for x=-1
[tex]\begin{gathered} y=-2x^2 \\ y=-2(-1)^2=-2(1)=-2 \\ \text{hence} \\ P2(-1,-2) \end{gathered}[/tex]P2(-1,-2)
b)when x=-2
[tex]\begin{gathered} y=-2x^2 \\ y=-2(-2)^2=-2(4)=-8 \\ \text{hence} \\ P3(-2,-8) \end{gathered}[/tex]Step 3
2 points to the rigth
a)
for x=1
[tex]\begin{gathered} y=-2x^2 \\ y=-2(1)^2=-2(1)=-2 \\ \text{hence} \\ P4(1,-2) \end{gathered}[/tex]P4(1,-2)
b)when x=2
[tex]\begin{gathered} y=-2x^2 \\ y=-2(2)^2=-2(4)=-8 \\ \text{hence} \\ P3(2,-8) \end{gathered}[/tex]Step 4
I hope this helps you