Respuesta :

Explanation

Step 1

find the vertex,

when you have a equation in the standard form

[tex]y=ax^2+bx+c[/tex]

the vertex is given by

[tex]x=-\frac{b}{2a}[/tex]

hence,

[tex]\begin{gathered} y=ax^2+bx+c\Rightarrow y=-2x^2 \\ so \\ a=-2 \\ b=0 \\ so,\text{ x= -}\frac{0}{2(-2)}=0 \\ so,\text{ the vertex is x= 0 ( or y- A}\Xi s) \end{gathered}[/tex]

evaluate when x= 0 to find the coordinate of the vertex

[tex]\begin{gathered} y=-2(0)^2=0 \\ so,\text{ vertex=(0,0)} \end{gathered}[/tex]

P1(0,0)

Step 2

now, 2 poins to the left

a)

for x=-1

[tex]\begin{gathered} y=-2x^2 \\ y=-2(-1)^2=-2(1)=-2 \\ \text{hence} \\ P2(-1,-2) \end{gathered}[/tex]

P2(-1,-2)

b)when x=-2

[tex]\begin{gathered} y=-2x^2 \\ y=-2(-2)^2=-2(4)=-8 \\ \text{hence} \\ P3(-2,-8) \end{gathered}[/tex]

Step 3

2 points to the rigth

a)

for x=1

[tex]\begin{gathered} y=-2x^2 \\ y=-2(1)^2=-2(1)=-2 \\ \text{hence} \\ P4(1,-2) \end{gathered}[/tex]

P4(1,-2)

b)when x=2

[tex]\begin{gathered} y=-2x^2 \\ y=-2(2)^2=-2(4)=-8 \\ \text{hence} \\ P3(2,-8) \end{gathered}[/tex]

Step 4

I hope this helps you

Ver imagen KarlozE708028
RELAXING NOICE
Relax