Respuesta :

From the circle;

We are to find the length of arc FGE

Given

Radius of circle = 10

From the circle

The reflex angle is

[tex]360^{\circ}-136^{\circ}=224^{\circ}[/tex]

Therefore the reflex angle = 224

We will calculate length of arc FGE using

[tex]\text{Length of arcFEG =}\frac{reflex\text{ angle}}{360}\times2\pi r[/tex]

Substituting values we get

[tex]\begin{gathered} \text{Length of arc FGE =}\frac{224}{360}\times2\times3.14\times10 \\ \text{Length of arc FGE }=\frac{224\times2\times3.14\times10}{360} \\ \text{Length of arc FGE =}\frac{14067.2}{360} \\ \text{Length of arc FGE = 39.07} \end{gathered}[/tex]

Therefore the length of arc FGE is 39.1 to the nearest tenth

RELAXING NOICE
Relax