Using the law of sines, determine whether the given information results in one triangle, two triangle or no triangle at all. Solve any triangle that results. a=8angle B = 57 degreeAngle A =49 degree

step 1
Find out the measure of angle C
Remember that
In any triangle, the sum of the interior angles must be equal to 180 degrees
so
A+B+C=180 degrees
substitute given values
49+57+C=180
C=180-106
C=74 degrees
step 2
Find out the length side b
Applying the law of sines
[tex]\frac{a}{sinA}=\frac{b}{sinB}[/tex]substitute
[tex]\frac{8}{s\imaginaryI n49^o}=\frac{b}{s\imaginaryI n57^o}[/tex]Solve for b
[tex]\begin{gathered} b=\frac{8*s\mathrm{i}n57^o}{s\imaginaryI n49^o} \\ \\ b=8.89\text{ ---> rounded to two decimal places} \end{gathered}[/tex]step 3
Find out the length side c
Applying the law of sines
[tex]\frac{a}{s\imaginaryI nA}=\frac{c}{s\imaginaryI nC}[/tex]substitute
[tex]\frac{8}{s\imaginaryI n49^o}=\frac{c}{s\imaginaryI n74^o}[/tex]solve for c
[tex]\begin{gathered} c=\frac{8*s\mathrm{i}n74^o}{s\imaginaryI n49^o} \\ \\ c=10.19\text{ ----> rounded to two decimal places} \end{gathered}[/tex]therefore