Plot points between and beyond each x-intercept and vertical asymptote. Find the value of the function at the given value of x.-537X15xf(x)=x-5(Simplify your answer. Type an integer or a simplified fraction.)

Given
[tex]f(x)=\frac{5x}{x-5}[/tex]Find
the values of function at given value of x
Explanation
at x = -5
substitute the value of x in given function
[tex]\begin{gathered} f(-5)=\frac{5(-5)}{-5-5} \\ \\ f(-5)=-\frac{25}{(-10)} \\ \\ f(-5)=\frac{5}{2} \end{gathered}[/tex]at x = -1
[tex]\begin{gathered} f(-1)=\frac{5(-1)}{-1-5} \\ \\ f(-1)=-\frac{5}{(-6)} \\ \\ f(-1)=\frac{5}{6} \end{gathered}[/tex]at x = 3
[tex]\begin{gathered} f(3)=\frac{5(3)}{3-5} \\ \\ f(3)=\frac{15}{(-2)} \\ \\ f(3)=-\frac{15}{2} \end{gathered}[/tex]at x = 1
[tex]\begin{gathered} f(1)=\frac{5(1)}{1-5} \\ \\ f(1)=\frac{5}{(-4)} \\ \\ f(1)=-\frac{5}{4} \end{gathered}[/tex]at x = 7
[tex]\begin{gathered} f(7)=\frac{5(7)}{7-5} \\ \\ f(7)=\frac{35}{2} \\ \end{gathered}[/tex]Final Answer
Therefore
at x = -5 , then function is 5/2
at x = -1 , then function is 5/6
at x = 1 , then function is -5/4
at x = 3 , then function is -15/2
at x = 7 , then function is 35/2