To factor the expression:
[tex]x^3+27[/tex]we need to notice that this is equal to:
[tex]x^3+27=x^3+3^3[/tex]then we have a sum of cubes. A sum of cubes can always be factor as:
[tex]x^3+y^3=(x+y)(x^2-xy+y^2)[/tex]Then we can factor the expression as:
[tex]x^3+27=(x+3)(x^2-3x+9)[/tex]To find the roots we equal the factor expression to zero and solve for x:
[tex](x+3)(x^2-3x+9)=0[/tex]This equation implies that:
[tex]\begin{gathered} x+3=0 \\ or \\ x^2-3x+9=0 \end{gathered}[/tex]The first equation can be solved as:
[tex]\begin{gathered} x+3=0 \\ x=-3 \end{gathered}[/tex]The second one can be solve as:
[tex]undefined[/tex]