Respuesta :

To factor the expression:

[tex]x^3+27[/tex]

we need to notice that this is equal to:

[tex]x^3+27=x^3+3^3[/tex]

then we have a sum of cubes. A sum of cubes can always be factor as:

[tex]x^3+y^3=(x+y)(x^2-xy+y^2)[/tex]

Then we can factor the expression as:

[tex]x^3+27=(x+3)(x^2-3x+9)[/tex]

To find the roots we equal the factor expression to zero and solve for x:

[tex](x+3)(x^2-3x+9)=0[/tex]

This equation implies that:

[tex]\begin{gathered} x+3=0 \\ or \\ x^2-3x+9=0 \end{gathered}[/tex]

The first equation can be solved as:

[tex]\begin{gathered} x+3=0 \\ x=-3 \end{gathered}[/tex]

The second one can be solve as:

[tex]undefined[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico