Respuesta :

After a rigid motion and dilation, triangles ABC and A'B'C' are similar, then their corresponding sides are proportional.

So, we have the general equation:

[tex]\frac{BA}{B^{\prime}A^{\prime}}=\frac{BC}{B^{\prime}C^{\prime}}=\frac{AC}{A^{\prime}C^{\prime}}[/tex]

So, let's evaluate each statement.

(a)

[tex]\frac{A^{\prime}C^{\prime}}{B^{\prime}A^{\prime}}=\frac{AC}{BA}[/tex]

To evaluate this statement, let's choose the first and the third part of the general equation:

[tex]\frac{BA}{B^{\prime}A^{\prime}}=\frac{AC}{A^{\prime}C^{\prime}}[/tex]

Multiplying both sides by A'C' /BA:

[tex]\frac{BA}{B^{\prime}A^{\prime}}*\frac{A^{\prime}C^{\prime}}{BA}=\frac{AC}{A^{\prime}C^{\prime}}*\frac{A^{\prime}C^{\prime}}{BA}[/tex]

And solving the question:

[tex]\frac{A^{\prime}C^{\prime}}{B^{\prime}A^{\prime}}=\frac{AC}{BA}[/tex]

So, the statement is true.

(b)

[tex]\frac{B^{\prime}C^{\prime}}{B^{\prime}A^{\prime}}=\frac{BA}{BC}[/tex]

To evaluate this statement, let's choose the first and second terms of the general equation:

[tex]\begin{gathered} \begin{equation*} \frac{BA}{B^{\prime}A^{\prime}}=\frac{BC}{B^{\prime}C^{\prime}} \end{equation*} \\ \end{gathered}[/tex]

Let's multiply both sides by B'C'/BA and solve the fractions.

[tex]\begin{gathered} \frac{BA}{B^{\prime}A^{\prime}}*\frac{B^{\prime}C^{\prime}}{BA}=\frac{BC}{B^{\prime}C^{\prime}}*\frac{B^{\prime}C^{\prime}}{BA} \\ \frac{B^{\prime}C^{\prime}}{B^{\prime}A^{\prime}}=\frac{BC}{BA} \end{gathered}[/tex]

Since the expressions are different, the statement is false.

(c)

[tex]\frac{AC}{A^{\prime}C^{\prime}}=\frac{B^{\prime}A}{BA}^[/tex]

To evaluate the statement, let's choose the first and the third part of the generic equation.

[tex]\begin{gathered} \frac{BA}{B^{\prime}A^{\prime}}=\frac{AC}{A^{\prime}C^{\prime}} \\ which\text{ }is\text{ the }same\text{ }as: \\ \frac{AC}{A^{\prime}C^{\prime}}=\frac{BA}{B^{\prime}A^{\prime}} \end{gathered}[/tex]

Since the second part is not equal to the statement, the statement is false.

(d)

[tex]\frac{CA}{C^{\prime}A^{\prime}}=\frac{CB}{C^{\prime}B^{\prime}}[/tex]

To evaluate this statement, let's choose the second and the third part of the equation.

[tex]\begin{gathered} \begin{equation*} \frac{BC}{B^{\prime}C^{\prime}}=\frac{AC}{A^{\prime}C^{\prime}} \end{equation*} \\ which\text{ }is\text{ }the\text{ }same\text{ }as \\ \frac{AC}{A^{\prime}C^{\prime}}=\frac{BC}{B^{\prime}C^{\prime}} \\ wh\imaginaryI ch\text{ }is\text{ }the\text{ }same\text{ }as \\ \frac{CA}{C^{\prime}A}=\frac{CB}{C^{\prime}B^{\prime}} \end{gathered}[/tex]

So, the statement is true.

(e)

[tex]\frac{A^{\prime}B^{\prime}}{AB}=\frac{C^{\prime}B^{\prime}}{C^{\prime}B}[/tex]

Let's evaluate the first and the second statement.

[tex]\begin{gathered} \begin{equation*} \frac{BA}{B^{\prime}A^{\prime}}=\frac{BC}{B^{\prime}C^{\prime}} \end{equation*} \\ which\text{ }is\text{ }the\text{ }same\text{ }as \\ \frac{AB}{A^{\prime}B^{\prime}}=\frac{CB}{C^{\prime}B^{\prime}} \end{gathered}[/tex]

If a/b = c/d, then b/a = d/c. So,

[tex]\frac{A^{\prime}B^{\prime}}{AB}=\frac{C^{\prime}B^{\prime}}{CB}[/tex]

The statement is true.

In summary,

The statements that are true are:

[tex]\frac{A^{\prime}C^{\prime}}{B^{\prime}A^{\prime}}=\frac{AC}{BA}[/tex][tex]\frac{CA}{C^{\prime}A}=\frac{CB}{C^{\prime}B^{\prime}}[/tex][tex]\frac{A^{\prime}B^{\prime}}{AB}=\frac{C^{\prime}B^{\prime}}{CB}[/tex]

RELAXING NOICE
Relax