Triangle ABC can be taken to triangle A′B′C′ using rigid motions and a dilation. Select all the equations that are true.


After a rigid motion and dilation, triangles ABC and A'B'C' are similar, then their corresponding sides are proportional.
So, we have the general equation:
[tex]\frac{BA}{B^{\prime}A^{\prime}}=\frac{BC}{B^{\prime}C^{\prime}}=\frac{AC}{A^{\prime}C^{\prime}}[/tex]So, let's evaluate each statement.
(a)
[tex]\frac{A^{\prime}C^{\prime}}{B^{\prime}A^{\prime}}=\frac{AC}{BA}[/tex]To evaluate this statement, let's choose the first and the third part of the general equation:
[tex]\frac{BA}{B^{\prime}A^{\prime}}=\frac{AC}{A^{\prime}C^{\prime}}[/tex]Multiplying both sides by A'C' /BA:
[tex]\frac{BA}{B^{\prime}A^{\prime}}*\frac{A^{\prime}C^{\prime}}{BA}=\frac{AC}{A^{\prime}C^{\prime}}*\frac{A^{\prime}C^{\prime}}{BA}[/tex]And solving the question:
[tex]\frac{A^{\prime}C^{\prime}}{B^{\prime}A^{\prime}}=\frac{AC}{BA}[/tex]So, the statement is true.
(b)
[tex]\frac{B^{\prime}C^{\prime}}{B^{\prime}A^{\prime}}=\frac{BA}{BC}[/tex]To evaluate this statement, let's choose the first and second terms of the general equation:
[tex]\begin{gathered} \begin{equation*} \frac{BA}{B^{\prime}A^{\prime}}=\frac{BC}{B^{\prime}C^{\prime}} \end{equation*} \\ \end{gathered}[/tex]Let's multiply both sides by B'C'/BA and solve the fractions.
[tex]\begin{gathered} \frac{BA}{B^{\prime}A^{\prime}}*\frac{B^{\prime}C^{\prime}}{BA}=\frac{BC}{B^{\prime}C^{\prime}}*\frac{B^{\prime}C^{\prime}}{BA} \\ \frac{B^{\prime}C^{\prime}}{B^{\prime}A^{\prime}}=\frac{BC}{BA} \end{gathered}[/tex]Since the expressions are different, the statement is false.
(c)
[tex]\frac{AC}{A^{\prime}C^{\prime}}=\frac{B^{\prime}A}{BA}^[/tex]To evaluate the statement, let's choose the first and the third part of the generic equation.
[tex]\begin{gathered} \frac{BA}{B^{\prime}A^{\prime}}=\frac{AC}{A^{\prime}C^{\prime}} \\ which\text{ }is\text{ the }same\text{ }as: \\ \frac{AC}{A^{\prime}C^{\prime}}=\frac{BA}{B^{\prime}A^{\prime}} \end{gathered}[/tex]Since the second part is not equal to the statement, the statement is false.
(d)
[tex]\frac{CA}{C^{\prime}A^{\prime}}=\frac{CB}{C^{\prime}B^{\prime}}[/tex]To evaluate this statement, let's choose the second and the third part of the equation.
[tex]\begin{gathered} \begin{equation*} \frac{BC}{B^{\prime}C^{\prime}}=\frac{AC}{A^{\prime}C^{\prime}} \end{equation*} \\ which\text{ }is\text{ }the\text{ }same\text{ }as \\ \frac{AC}{A^{\prime}C^{\prime}}=\frac{BC}{B^{\prime}C^{\prime}} \\ wh\imaginaryI ch\text{ }is\text{ }the\text{ }same\text{ }as \\ \frac{CA}{C^{\prime}A}=\frac{CB}{C^{\prime}B^{\prime}} \end{gathered}[/tex]So, the statement is true.
(e)
[tex]\frac{A^{\prime}B^{\prime}}{AB}=\frac{C^{\prime}B^{\prime}}{C^{\prime}B}[/tex]Let's evaluate the first and the second statement.
[tex]\begin{gathered} \begin{equation*} \frac{BA}{B^{\prime}A^{\prime}}=\frac{BC}{B^{\prime}C^{\prime}} \end{equation*} \\ which\text{ }is\text{ }the\text{ }same\text{ }as \\ \frac{AB}{A^{\prime}B^{\prime}}=\frac{CB}{C^{\prime}B^{\prime}} \end{gathered}[/tex]If a/b = c/d, then b/a = d/c. So,
[tex]\frac{A^{\prime}B^{\prime}}{AB}=\frac{C^{\prime}B^{\prime}}{CB}[/tex]The statement is true.
In summary,
The statements that are true are:
[tex]\frac{A^{\prime}C^{\prime}}{B^{\prime}A^{\prime}}=\frac{AC}{BA}[/tex][tex]\frac{CA}{C^{\prime}A}=\frac{CB}{C^{\prime}B^{\prime}}[/tex][tex]\frac{A^{\prime}B^{\prime}}{AB}=\frac{C^{\prime}B^{\prime}}{CB}[/tex]