From the diagram above, we can see that
[tex]\text{the area of the figure = the area of the triangle + the area of the rectangle}[/tex]Also,
[tex]\begin{gathered} h+11ft=17ft \\ \text{thus } \\ h=17-11=6ft \end{gathered}[/tex][tex]\text{the area of a triangle =}\frac{1}{2}\times\text{ base}\times\text{ perpendicular height}[/tex]In this case,
base = 23ft,
perpendicular height = h = 6ft.
Therefore,
[tex]\text{the area of the triangle = }\frac{1}{2}\times23\times6=23\times3=69\text{ square fe}et[/tex][tex]\begin{gathered} \text{the area of a rectangle = length }\times\text{ width} \\ \text{ In this case,} \\ \text{length = 23ft, and } \\ \text{width = 11ft} \\ \text{therefore,} \\ \text{the area of the rectangle = 23ft }\times\text{ 11ft = 253 square fe}et \end{gathered}[/tex]