Answer:
The correct answer is the first option: (-10, 8)
Explanation:
For two given points that form a segment, P and Q, we can find the coordinates of the midpoint using:
[tex]\begin{gathered} \begin{cases}P=(x_P,y_P){} \\ Q={(x_Q},y_Q)\end{cases} \\ . \\ Midpoint=(x_M,y_M),\text{ }where: \\ . \\ x_M=\frac{x_P+x_Q}{2} \\ . \\ y_M=\frac{y_P+y_Q}{2} \end{gathered}[/tex]We know that A = (-4, 2) and the midpoint = (-7, 5). Then;
[tex]\begin{gathered} B=(x_B,y_B) \\ . \\ -7=\frac{-4+x_B}{2} \\ . \\ 5=\frac{2+y_B}{2} \end{gathered}[/tex]And solve the two equations:
[tex]\begin{gathered} -7=\frac{-4+x_B}{2} \\ . \\ -7\cdot2=-4+x_B \\ -14+4=x_B \\ x_B=-10 \end{gathered}[/tex][tex]\begin{gathered} 5=\frac{2+y_B}{2} \\ . \\ 5\cdot2=2+y_B \\ 10-2=y_B \\ y_B=8 \end{gathered}[/tex]Thus, B = (-10, 8)