The distance between 2 points (x1, y1) and (x2, y2) is calculated as:
[tex]\text{distance}=\sqrt{(x_2-x_1)^2+(y_2-y_1)2}[/tex]So, replacing (x1, y1) by (-4, 6) and (x2, y2) by (3, -7), we get:
[tex]\begin{gathered} \text{distance}=\sqrt{(3-(-4))^2+(-7-6)^2} \\ \text{distance}=\sqrt{(3+4)^2+(-7-6)^2} \\ \text{distance}=\sqrt{(7)^2+(-13)^2} \\ \text{distance}=\sqrt{49+169} \\ \text{distance}=\sqrt{218} \\ \text{distance}=14.76 \end{gathered}[/tex]Answer: The distance is 14.76 units