Given the confidence interval value formula
[tex]CI=\bar{x}\pm z\times\frac{s}{\sqrt[]{n}}[/tex][tex]\begin{gathered} \bar{x}\Rightarrow\operatorname{mean} \\ \bar{x}=10.4 \\ s\Rightarrow\text{standard deviation} \\ s=3.2 \\ \alpha=\frac{95}{100}=0.95 \\ z_{\alpha}=1.96 \\ n=32 \end{gathered}[/tex]Substitute the values defined above and solve for confidence interval
[tex]\begin{gathered} CI=10.4\pm1.96\times\frac{3.2}{\sqrt[]{32}} \\ CI=10.4\pm1.96\times\frac{3.2}{5.66} \\ CI=10.4\pm1.96\times0.57 \\ CI=10.4\pm1.12 \\ CI=10.4-1.12\text{ to 10.4+1.12} \\ CI=9.28\text{ to 11.52} \end{gathered}[/tex]Hence,the average for all students fall in between confidence interval of 9.28 to 11.52