Answer: We have a linear equation that represents the number of miles that satellite A flies in one hour, which is:
(A)
[tex]y(x)=4600x[/tex]So, In one hour this satellite flies:
[tex]y(1)=4600(1)=4600\text{ miles}[/tex](B)
The linear equation for satellite B can be extracted from the given table as follows:
Slope:
[tex]\begin{gathered} y_B(x)=mx+b \\ \rightarrow\therefore\rightarrow \\ m=\frac{\Delta y}{\Delta x}=\frac{60,000-15,000}{20-5}=\frac{45,000}{15}=3000 \\ \end{gathered}[/tex]Y-Intercept:
[tex]\begin{gathered} y_B(x)=mx+b \\ \rightarrow\therefore\rightarrow \\ y_B(5)=3000(5)+b=15,000 \\ \rightarrow\therefore\rightarrow b=15,000-36,000=-21,000 \\ \\ \therefore\rightarrow \\ y_B(x)=3000x-21,000 \end{gathered}[/tex]Miles, that the Satellite (B) travels in one hour are:
[tex]y_B(1)=3000(1)-21,000=3000-21,000=-18,000[/tex]The difference in the miles traveled by these two space explorers are:
[tex]y_B(1)-y_A(1)=-18,000mi-3000mi=-15,000[/tex]Therefore this is the answer
.