Given a cube with side l, the volume is given by
[tex]\text{ the volume of cube = }l^3[/tex]In this case,
[tex]\begin{gathered} l=\frac{1}{3}\text{ inch} \\ \text{ therefore,} \\ \text{the volume of the cube = (}\frac{1}{3})^3=\frac{1}{27}inch^3 \end{gathered}[/tex]Given a box with width, w, length, l, and height, h, then
[tex]\text{ the volume of the box = }lbh[/tex]In this case,
[tex]w=2\frac{2}{3}\text{ inch, }l=3\frac{1}{3}\text{ inch,}h=2\frac{1}{3}\text{ inch}[/tex][tex]\text{ the volume of the box = }2\frac{2}{3}\times3\frac{1}{3}\times2\frac{1}{3}=\frac{560}{27}inch^3[/tex]Let the number of cubes it takes to fill the box be n, then we must have
[tex]n=\frac{\text{ volume of the box}}{\text{ volume of the cube}}[/tex][tex]\begin{gathered} \text{ therefore,} \\ n=\frac{\frac{560}{27}}{\frac{1}{27}}=\frac{560}{27}\times\frac{27}{1}=560 \end{gathered}[/tex]Therefore it will take 560 of the 1 / 3 inch cubes to fill the box