Given the table, we have:
Add all probabilities
0.366 + 0.427 + 0.180 + 0.027 = 1
The table describes a probability distribution because all probabilities are between 0 and 1, and the sum of probabilities is equal to 1.
For mean:
[tex]\begin{gathered} mean=0(0.366)+1(0.427)+2(0.180)+3(0.027) \\ =0.427+0.360+0.081 \\ =0.868 \end{gathered}[/tex]
For standard deviation:
[tex]SD=\sqrt{0.366(0-0.868)^2+0.427(1-0.868)^2+0.180(2-0.868)^2+0.027(3-0.868)^2}[/tex]
Simplify:
[tex]\begin{gathered} SD=\sqrt{0.366(-0.868)^2+0.427(0.132)^2+0.180(1.132)^2+0.027(2.132)^2} \\ SD=\sqrt{0.636576} \\ SD=0.798 \end{gathered}[/tex]
Answer:
Yes, the table shows a probability distribution
mean = 0.868
standard deviation = 0.798