Given:
3x+4y=7
Lets find the slope intercept form first,
[tex]\begin{gathered} 4y=-3x+7 \\ y=-\frac{3x}{4}+\frac{7}{4} \end{gathered}[/tex]Slope of the equation is,
[tex]m_1=-\frac{3}{4}[/tex]1. The slope of a line perpendicular to this line is,
Since,
[tex]\begin{gathered} m_1m_2=-1 \\ (-\frac{3}{4})m_2=-1 \\ m_2=-1\times(-\frac{4}{3}) \\ m_2=\frac{4}{3} \end{gathered}[/tex]Hence, the answer is
[tex]m_2=\frac{4}{3}[/tex]2. The slope parallel to this line is,
Since,
[tex]\begin{gathered} m_1=m_2 \\ m_2=-\frac{3}{4} \end{gathered}[/tex]Hence, the answer is,
[tex]m_2=-\frac{3}{4}[/tex]