Answer:
[tex]The\text{ possible coordinates are \lparen-7,-4\rparen or \lparen-7,8\rparen}[/tex]Explanation:
Here, we want to get the possible coordinates of point A
The distance between two points can be calculated as follows:
[tex]D\text{ = }\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}[/tex]Let the y-coordinate of A be y
So we have the coordinates to use as (-7,y) and (1,2)
Substituting the values, we have it that:
[tex]10\text{= }\sqrt{\left(1+7\right)^2+\left(2-y\right)^2}[/tex]Square both sides:
[tex]\begin{gathered} 10^2\text{ = 8}^2\text{ + \lparen2-y\rparen}^2 \\ 10^2-8^2\text{ = \lparen2-y\rparen}^2 \\ \lparen \end{gathered}[/tex][tex]\lparen2-y)\placeholder{⬚}^2=\text{ 36}[/tex][tex]\begin{gathered} 2-y\text{ = + 6 or 2-y = -6} \\ y\text{ = 2-6 or y= 2+6} \\ .y\text{ = -4 or 8} \end{gathered}[/tex]The possible coordinates of A are (-7,-4) or (-7,8)