ANSWER:
3.04 m/s
STEP-BY-STEP EXPLANATION:
Given:
Acceleration (a) = 1.9 m/s²
Since starting from rest the initial velocity (u) is 0 m/s
Distance (d) = 8 ft
We must convert feet to meters, knowing that 1 foot is equal to 0.3048 meters
Therefore:
[tex]8\text{ ft }\cdot\frac{0.3048\text{ m}}{1\text{ ft}}=2.44\text{ m}[/tex]Applying the following formula we calculate the velocity at the bottom of the ramp, that is, the final velocity:
[tex]\begin{gathered} v^2=u^2+2as \\ \\ \text{ We replacing:} \\ \\ v^2=0^2+2\left(1.9\right)\left(2.44\right) \\ \\ v^2=9.272 \\ \\ v=\sqrt{9.272} \\ \\ v=3.04\text{ m/s} \end{gathered}[/tex]The velocity of the ball at the bottom of the ramp is 3.04 m/s