Respuesta :

Part a

we have the function

[tex]\begin{gathered} f(x)=x^4 \\ interval\text{ \lbrack1,}infinite) \end{gathered}[/tex]

Remember that

A function is one-to-one if every element of the range corresponds to exactly one element of the domain 

using a graphing tool

The answer Part a is

This is one-to-one

Part B

we have the function

[tex]f(x)=(e^x)^2[/tex]

interval -----> All real numbers

using a graphing tool

The answer Part B is

This is one to one

Part C

we have the function

[tex]f(x)=(\log_2x)^2[/tex]

Interval ----> All real numbers

The answer Part C is

Is not one to one function

Part D

we have the function

[tex]f(x)=(x-2)^4[/tex]

interval [0,infinite)

using a graphing tool

The answer Part D is

Is not one to one function

Part E

we have the function

[tex]f(x)=\sqrt[3]{x}[/tex]

Interval ----> all real numbers

using a graphing tool

The answer Part E is

Is one to one function

Ver imagen OviS257035
Ver imagen OviS257035
Ver imagen OviS257035
Ver imagen OviS257035
RELAXING NOICE
Relax