Respuesta :

Given,

[tex]f(x)=\frac{x+1}{2-x}[/tex]

to find,

[tex]f(5i)=\frac{5i+1}{2-5i}[/tex]

let us use the conjugate property,

[tex]\begin{gathered} \frac{a+bi}{c+di}\: =\: \frac{\left(c-di\right)\left(a+bi\right)}{\left(c-di\right)\left(c+di\right)} \\ =\frac{\left(ac+bd\right)+\left(bc-ad\right)i}{c^2+d^2} \end{gathered}[/tex]

here,

[tex]a=1,b=5,c=2,d=-5[/tex][tex]\begin{gathered} =\frac{\left(1\cdot\:2+5\left(-5\right)\right)+\left(5\cdot\:2-1\cdot\left(-5\right)\right)i}{2^2+\left(-5\right)^2} \\ =\frac{-23+15i}{29} \\ =-\frac{23}{29}+i\frac{15}{29} \end{gathered}[/tex]

The answer is,

[tex]-\frac{23}{29}+i\frac{15}{29}[/tex]

RELAXING NOICE
Relax