Answer
Numerator:
[tex]5x-1[/tex]
Denominator:
[tex](x-1)^2[/tex]
EXPLANATION
Problem Statement
The question asks us to simplify the complex rational expression given below:
[tex]\frac{\mleft(\frac{3}{x+1}+\frac{2}{x-1}\mright)}{\frac{(x-1)}{x+1}}[/tex]
Solution
To solve the question, we will proceed to simplify the Numerator and Denominator separately.
Numerator:
[tex]\begin{gathered} \frac{3}{x+1}+\frac{2}{x-1} \\ \text{Multiply the numerator and denominator by (x+1)(x-1)} \\ \mleft(\frac{3}{x+1}+\frac{2}{x-1}\mright)\times\frac{(x+1)(x-1)}{(x+1)(x-1)} \\ \text{Expand the bracket} \\ \frac{3}{(x+1)}\times\frac{(x+1)(x-1)}{(x+1)(x-1)}+\frac{2}{(x-1)}\times\frac{(x+1)(x-1)}{(x+1)(x-1)} \\ \\ \frac{3(x-1)}{(x+1)(x-1)}+\frac{2(x+1)}{(x+1)(x-1)} \\ \\ =\frac{3(x-1)+2(x+1)}{(x+1)(x-1)} \end{gathered}[/tex]
Denominator:
[tex]\begin{gathered} \frac{1}{\frac{(x-1)}{x+1}} \\ we\text{ can re-write this expression as:} \\ \frac{x+1}{x-1} \end{gathered}[/tex]
Now, let us combine the Numerator and Denominator as follows:
[tex]\begin{gathered} \frac{(\frac{3}{x+1}+\frac{2}{x-1})}{\frac{(x-1)}{x+1}}=\mleft(\frac{3}{x+1}+\frac{2}{x-1}\mright)\times\frac{1}{\frac{(x-1)}{x+1}} \\ \\ =\mleft(\frac{3}{x+1}+\frac{2}{x-1}\mright)\times\frac{x+1}{x-1} \\ \\ =\frac{3(x-1)+2(x+1)}{(x+1)(x-1)}\times\frac{(x+1)}{(x-1)} \\ \\ (x+1)\text{ crosses out.} \\ \\ =\frac{3(x-1)+2(x+1)}{(x-1)}\times\frac{1}{(x-1)} \\ \\ =\frac{3(x-1)+2(x+1)}{(x-1)^2}=\frac{3x-3+2x+2}{(x-1)^2} \\ \\ =\frac{5x-1}{(x-1)^2} \end{gathered}[/tex]
Final Answer
Numerator:
[tex]5x-1[/tex]
Denominator:
[tex](x-1)^2[/tex]