Step 1
A rectangular parallelepiped It is a three-dimensional box-shaped structure. The length of all the parallel edges here are equal.
Step 2:
The rectangular parallelepiped has the dimensions:
12 by 20 by 25
[tex]\begin{gathered} \text{Volume of the rectangular parallelepiped } \\ =\text{ 12 }\times\text{ 20 }\times\text{ 25} \\ =\text{ 6000} \end{gathered}[/tex]Step 3
Find the volume of a sphere with a diameter 25
Radius = 12.5
[tex]\begin{gathered} \text{Volume of a sphere = }\frac{4}{3}\pi r^3^{} \\ =\text{ }\frac{4\times3.14\times12.5^3}{3} \\ =\text{ 8177.08 } \end{gathered}[/tex]Final answer
The volume of the part of the sphere outside the parallelepiped
= 8177.08 - 6000
= 2177.08