We will have the following:
We are given the following:
[tex]\begin{cases}m_{\text{ball}}=9\operatorname{kg} \\ m_{pin}=2\operatorname{kg} \\ v_{pin}=11.04m/s \\ v_{\text{ball}}=1.8m/s\end{cases}[/tex]So, we will have to proceed as follows:
First, we calculate the momentum of the pin:
[tex]\tau_{pin}=(2\operatorname{kg})(11.04m/s)\Rightarrow\tau_{pin}=22.08\operatorname{kg}\cdot m/s[/tex]Now, we calculate the final momentum of the ball:
[tex]\tau_{f\text{ball}}=(7\operatorname{kg})(1.8m/s^2)\Rightarrow\tau_{\text{fball}}=12.6\operatorname{kg}\cdot m/s[/tex]Now, we will have that the original momentum of the ball would be:
[tex]\tau_{\text{iball}}=\tau_{\text{fball}}+\tau_{pin}\Rightarrow\tau_{\text{iball}}=12.6\operatorname{kg}\cdot m/s+22.08\operatorname{kg}\cdot m/s[/tex][tex]\Rightarrow\tau_{\text{iball}}=34.68\operatorname{kg}\cdot m/s[/tex]Now, we find it's initial speed:
[tex]\tau_{\text{iball}}=m\cdot v_i\Rightarrow34.68\operatorname{kg}\cdot m/s=(7\operatorname{kg})\cdot v_i[/tex][tex]\Rightarrow v_i=\frac{867}{175}m/s\Rightarrow v_i\approx4.95m/s[/tex]So, the initial speed of the ball was of 867/175 m/s, that is approximately 4.95 m/s.