Given,
[tex]\begin{gathered} n=8 \\ p=\frac{55}{100} \\ p=0.55\% \end{gathered}[/tex]The probability mass function is calculated by the given formula,
[tex]P(X=x)=^nC_xp^x^{}(1-p)^{n-x}^{}[/tex]Here, x = 0, 1, 2, 3.....n.
Here, n = 8 and x = 5.
Calculate the probability that she gets exactly 5 bullseyes.
[tex]\begin{gathered} P(X=5)=^8C_5(0.55)^5(1-0.55)^{8-5} \\ P(X=5)=^8C_5(0.55)^5(1-0.55)^3 \\ P(X=5)=\frac{8\times7\times6}{3\times2\times1}(0.55)^5(0.45)^3 \\ P(X=5)=0.256 \end{gathered}[/tex]Therefore, the probability that she gets exactly 5 bullseyes is 0.256